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Abstract—There are various kinds of deployable members developed in order to improve the
packing efficiency of space structures. Some of them ingeniously utilize elastic buckling phenomena,
such as flexural buckling and torsional buckling. However, their application is primanly restricted
to straight members. Herein. we present an interesting buckling phenomenon of a ring which
considerably reduces its original volume and could be applied to a deployable ring. First, we show
an accurate method which can be used to analyze this buckling phenomenon accompanying finite
rotations in space. Then, with this method, we theoretically examine the effect of structural par-
ameters on buckling behavior.

. INTRODUCTION

Various kinds of deployable members have recently been developed in order to improve
the packing cflicicncy of space structures. In some of the members, elastic buckling phenom-
ena like flexural buckling and torsional buckling are ingeniously utilized (Natori and
Miura, 1985). However, their utilization is primarily restricted to one-dimensional straight
members, such as columns and beams.

Herein, we present and theoretically investigate an interesting buckling phenomenon
of a ring which considerably reduces its original volume and could be applied to a deployable
ring. This buckling phenomenon, classitied as a limit-load instability, occurs when the
external moments shown in Fig. | are applied to a ring whose in-plane bending rigidity is
smaller than the out-of-planc rigidity. At the locations of the applied moments, the ring is
supported such that it is free to move and to rotate only along and around its diameter. As
can be seen from the buckling process illustrated in Fig. 2, the ring deforms accompanying
considerably large rotations in three-dimensional space and is finally transformed to a small
ring with a diameter of one-third of its original size. It is of interest that this final shape is
kept without any external force. To our best knowledge, this buckling phenomenon has
never even been examined theoretically.

In order to investigate the above buckling phenomenon of a ring theoretically, we have
to usc an accurate method of analysis which precisely takes into account the geometric non-
lincarity, since this buckling behavior accompanies very large rotations in space. The
analysis of this kind has been studied by various authors: Love (1944), Antman (1972,
1974), Bathe and Bolourchi (1979), Rankin and Brogan (1984), Simo (1985) and Simo and
Vu-Quoc (1986), among others. We have also developed an accurate numerical method
which can be applicd to the present buckling analysis (Goto er /.. 1988). Our method using
the transfer matrix technique {sce Kersten (1962), Pestel and Leckie (1963) and Livesley
(1964)] is characterized by the point that the ficld transfer equations are directly derived
from the rigorous governing differential equations of non-lincar space rods with Lagrangian
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Fig. {. External moments applied to a deployable ring.
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expressions (Goto et al.. 1985), different from the method using conventional small-
displacement theory within a co-rotational framework. Here, we further improve our
method by emploving the incremental arc-length method (Riks, 1979) such that it can be
used to analyze the behavior of limit-load instability accurately.

2. DEPLOYABLE RING MODEL

For the analysis of the transtormation process of the deployable ring. we here introduce
a structural model. as shown in Fig. 3. This ring has a constant doubly symmetric cross-
section. A global Cartesian coordinate system (XX, }. Z) is introduced at the initial con-
figuration of the ring with Z along the tangent of the centroidal line. Coordinate axes (X, 1)
arc chosen such that they coincide with the doubly symmetric axes of the cross-section
where Y-axis s along the diameter. The ring is supported at both ends of a diameter. At
one end. that is. the origin of coordinates (X" Y. Z). the ring is completely fixed. At the
other end. it 1s free to move and to rotate only along and around the .Y-axis. At this end,
an external moment is applicd about Y-axis.

Considering the symmetry of the structure along with the antisymmetry of the applied
moment, the structural model shown in Fig. 3 can be simplified and we have only to analyze
cither 1°2 or 14 of the original model, as dlustrated in Fig. 4. It should be noted for the
1’4 model that the rotational angle about the Y-axis is equivalent to a half of the cor-
responding value for the original model. To discretize the structural system, the 174 model
requires fewer fintte elements. However, as a result of our numerical analysis, the con-
vergenee of the 12 model in the Newton Raphson iterative procedures turned out to
be faster than that of the 1/4 model. Further, the number of finite clements is not so cructal
in our transfer matrix method as in the conventional stiffness method. Thus, we here adopt
the 1,2 model in our numerical analysis. With this model, the analysis of the deployable
rings is reduced to the solution of a two-point boundary value problem.

In view of the simplicity of analysis, the above ring model is approximated by the
assemblage of straight elements.

3ANALYSIS OF RODS ACCOMPANYING FINITE ROTATIONS IN THREE-DIMENSIONAL
SPACE
The buckling behavior of our concern accompuinies very large rotations in three-
dimensional space. Thus, we have to use an accurate method ot analysis which preciscly
takes into account the geometrical non-lincarity of the rod behavior. Since we have already
developed a numerical method (Goto et al.. 1988) which satisfies this requirement, a bricf
explanation is made about this method.

(a) Gorverning differential equations of rods under small strains

Here, we describe the governing differential equations of the rod model on which our
numerical method is based. Considering that the material of the deployable rings must
remain clastic during the buckling process, it is expected that the strains remain negligibly
small compared with unity even in the case when the ring undergoes extremely large
rotations. Thus, the governing differential equations adopted here are those of the theory
of finite displacements and small strains. These cquations arc derived from the exact
governing equations of finite displacements and finite strains (Goto et al.. 1985). simplified
by introducing the assumption of small strains. As can be scen from this assumption, these
governing equations have no restrictions on the magnitude of the finite rotations, as long
as the strains are small. In addition to the assumption of small strain. we introduce the
customary beam assumptions of no deformation within the cross-scction and no shear of
the cross-scction with respect to the beam axis.

In order to express the governing differential equations, we consider an originally
straight clement shown in Fig. 5, and introduce a local Cartesian coordinate system (v, v. 2)
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Fig. 3. Ring model and global coordinates.
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with base vectors (g, g,.8.). Based on this coordinate system, the four deformation com-
ponents (k,,K,, T,&). representing the deformation of the centroidal axis of the element,
are defined as follows :

dfl
a‘;l
i

x0

0
=0

ix() O, T,
= [D] iof» g =(I+e)i, [P]l=] -1, 0,
i:() B — Ky,

Ky,

-k |, (la=)
0

where (i, 1,0.1;0) are the unit vectors obtained by normalizing the deformed base vectors

Geometrical

boundary conditions

0
X
(a) 1/2 of the original model (/2 model)
2 %
2 ¢
A ‘
%

(b) 1/4 of the original model (1/4 model)
Fig. 4. Simplification of the original model.
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Fig. 5. Coordinate system for a straight element.

(+0+ 8,0 &:0) ON the centroidal axis which are orthogonal due to beam assumptions. Phys-
ically, (x /(1 +&), k. /(1 +&0)), t/(1 +¢&,). and &, correspond to the components of curvature
about the deformed base vectors (g.q.8.4). the torsional rate and the extensional rate,
respectively, of the deformed controidal axis.

With the deformation components defined above, the cquilibrium equations are derived
through the principle of virtual work by introducing beam assumptions together with the
condition of small strains.

The constitutive relations are assumed to follow the lincar elastic relations as

0-:: = Ec’::‘ a.‘" = 26(':\' JJ‘V = EG"’I}‘ (2&"’{:)
in which stress and strain are second Piola -Kirchhoff stress tensor and Green strain tensor,
respectively, defined in terms of the (x, v, z) coordinates. Under the condition of small
strains along with the beam assumptions, ¢qns (2a <) are reduced to

.. = E{ty+yr,—xk), 0., = —Gyt, o, = 0x1. (3a-c)

The present constitutive relations coincide with those defined between physical components
of stress and strain (Fung, 19695), as long as the small strain condition holds.

The governing differential equations derived from the above procedures are sum-
marized in Table 1. These governing equations for rods are similar to KirchhofT 's equations
(Love, 1944) except that our equations consider the effect of elongation of the centroidal
axis.

Although the governing differential equations in Table | are expressed by the defor-
mation components defined by eqns (la-c), these deformation components can be related to
the translational and the rotational displacement components. [f we express the translational
displacements by the components (i, ¢y, wy) in the directions of the base vectors (g..2,. 8.)
and the rotational displacements by the directional cosines {I;] of vectors (i,9.1,0.1.0)
referred to the base vectors (g, g,,8.) as

i‘.g g !i:- "\‘x" [(:
fof = Unllg g Ul =1l Iy L] (4a.b)
i:() 8- Ifw [3\~~ 1:‘:.

the deformation components and the displacement components are related to each other
as shown below:

dillds = [Dllle], wh = (V4. v = (1 +85)s. wy = (I+ep)— 1, (5a-d)
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Table 1. Governing equations for space rods

Equilibrium equations Constitutive equations
F.—Ft+Fx, =0 N = EAde,

F.+F1—Fx, =0 M.= —ELx,. M,=Elx, M =Gl
F.+FKrk —Fx, =0 where

M. —-Mx,~Mxk =0

M,=|o.xdd, M,=] o.ydA
where 4 ’ 4
F.=M —Mt+ M.k,

F,= M, + M+ M.k,

=N : :
£ A =J- dd. I, =J dd. 1, = J- viddA
4 A A

r . . .
- Circularcross-section (radius = r)

A‘!: = J‘ (0':,.\'— U:.:,V) dd4
4

= J (*+y3)dd = nr'2
A

J = < *Rectangular cross-section (b x h)
{Timoshenkoetal., 1970)

phf 1922 1 (@n— Ok
—T{l_ﬁ,;(ln—l)mnh 2 }

\

Remarks: (*) = d(+)/dz, j dd = Integration over the cross-sectional area.
A

where * denotes the difTerentiation with respect to z. It should be noted for the directional
cosines [£;,] that three components out of nine are independent.

(b) Numerical unalysis based on the transfer matrix technique

We shall explain a numerical method (Goto et al., 1988) to solve the aforementioned
non-linear governing differential equations of space rods. In this method, the transfer matrix
technique was expanded into non-linear range.

In the first place, we derive the field transfer equations which transfer the nodal physical
quantities from node i to i+ | of a finite element.

The state vector {Q,} which consists of these physical quantities is defined by

{Ql} = (Il(,, Uns Wa, [Idh]' Fx» F»-v F_., My* - A’?u M:)v (6)

in which (F, F,, F,) and (M,, — M, M) are components of sectional force F and sectional
moment M, respectively defined as

F= ﬁxgr +F}'g_v+ng:’ M= M}'g\'—M.rgv-*"rl:g:' (7‘l‘b)

As can be seen from eqn (6). the directional cosines [/,,] are adopted herein to express the
rotational displacements. Although [/;] contains nine components, only three components
are independent.

Using the Taylor expansion at node i, the components of the state vector at node i+ |
are given by

Qilicr = Q1+ i Q"1 Ayt (1 < jk < 18), @®)

LN

where Q{"|, denotes the nth order derivative of Q, at node i and A: is the element length.
in order for eqn (8) to be used as the field transfer equations, Q'”|, has to be expressed
explicitly by the components of the state vector {Q,|,} at node i. For this purpose, the
governing equations in Table 1, together with eqn (5) are transformed into the first order
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differental equations in terms of the components of the state vector, as summarized in Table
2. Then, the derivative Q™|, can be obtained by successive differentiation and substitution
of these first order differential equations. As shown in the Appendix. Q'"|, is derived up to
the second derivative and the higher order terms are truncated in eqn (8). Finally, the field
transfer equations can be expressed in the form

Q/!r‘] = T/(Q[Ir """ QlS't) (l S./S 18) (9)

The field transfer equations are non-linear in terms of the components of the state vector.
So the basic algebraic equations involved in the present problem also become non-linear
and some iterative procedure is required to solve them. As an iterative procedure, we here
employ the incremental arc-length method combined with the Newton-Raphson iterative
procedures. For this purpose. we have to derive from eqn (9) the incremental field transfer
equations linearized in terms of the components of the incremental state vector. In these
incremental equations, the small incremental directional cosines [Al;] are replaced by
the incremental rotational angles (Azx,.Ax,.Ax.) about the base vectors (g,.g,.g.). This
replacement is based on the relation given by

0, Ax., — Az,
[A[‘m] = [l(ih] *—Al;\ 0. Aﬂl, . (10)
Ax,, —Azx,, 0

The use of the above incremental rotational angles as components of the state vector makes
it possible to express the incremental ficld transfer equations in the matrix form

AQTL ) = [ATLHAQH} (1< jk<12), (I
where [AT ] is the incremental field transter matrix and {AQ}} is expressed as
HAQR = {Auy Avg Awy, Ax Do, Aa, AFAF, AF AM,, —AM AM.}.  (12)

This form is exactly the same as that of the tield transter equations for the small displacement

Tabie 2. First order diffesential equations

u, =1 4—(/_.‘F‘ +14, F.-+/::,":)/’E"‘;[:\
vy =1+, F, + 1, F, + L F)EAM,
wi o= 1+ (/:‘Fc +1, F‘ 1"l.':p:),/lé“"1"[!: —1

0, MGJ,  M.JEL
[ =} -G, 0, MEL ([s]
- MJEl, —MJEL, 0
Fo=0
F, =0
F.=0

M=oy, =l L DVE Ul =10 ) F,
M=o~ OF + Ued =1L F.
€Mo= (A =l AN+ Ul =D F,
where
M, M,
=M= L]y =M.

M, Y2

=
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theory. Further, the small rotational angles (Ax,, Ax,.Ax.) can be treated as components
of a vector quantity. Thus, the usual techniques of the transfer matrix method (Kersten,
1962 ; Pestel and Leckie. 1963 ; Livesley, 1964) can be applied to the incremental equations,

In the present ring model approximated by the assemblage of straight elements, the
centroidal axes of adjacent elements are not parallel to each other, as illustrated in Fig. 6.
Thus, in addition to the field transfer equations, we have to derive the point transfer
equations which transfer the state vector from the left to the right at a node. These point
transfer equations are also necessary, if concentrated loads are applied at a node.

Suppose elements i and i+ | are rigidly connected to each other at node i+ 1, as in Fig.
6. The directional cosines [L,);, , of the element coordinates (x'*', 3**' -*') are defined
in terms of the adjacent element coordinates (x', ', =) as

g-‘ i+t g.t i
g =I[Lalisig - 13)
g: g:

Fi, 1 and M{,, in Fig. 6 are the concentrated force and moment, respectively applied
at node i+ 1, and the (¥*!, y'*' z'*')-components of these concentrated loads are defined
by

Ff+ = Foe 1Bust+ F;n~tg},rul + Fi 1@ist,
l\l:* | = Mi" 1t + A[::» 18,0t + A/[;n 181, (|4il.b)

Considering equilibrium and compatibility, the point transfer equations at node i+ | can
be given for the components of the state vector as

Ut i+ Ugrr Y

Do = [Lab]H- 1Y Vorvr (s

M’ou i M‘OA vt

(anlis lli“ = [Lus)iv 1 lashis l]”[Lub]H- Is

qul i+ E‘lol i Fi”'

E\"" = [Lub]H-I [."y“, + F;‘*' )

Faur Furi F.
M i)ivt M)i (M

'—A’x"" =[Lub]i+l —‘M,(lu + M;rn . (lSil—d)
1“[_.:*! M:wl M?ol

Mic+1 F§+l

Element i Element i+1

Yode i+1
i

Node i+2
Node i

Fig. 6. Nodes of elements in the original state.



902 Y. Goto et al

The incremental point transfer equations are derived as follows, by taking the increment
of eqns (15) and introducing the incremental rotational angles from eqn (10)

{AQ;‘[H— l}'?l = [AP/.k]“- l {AQ:[“’|}!+{AQ‘1&«L'|}1- l* (‘6)

where [AP,]'" ' is the incremental point transfer matrix at node i+ [ and [AQ*“|,_ 1" ' is
given by

TAQX 1 =1{0.0.0,0,0,0,AF¢ . AF . CAFC AM G CAM G AM L) (1)

In the incremental arc-length method. eqns (11) and (16) as well as an equation to control
the increment of the arc-length of equilibrium paths (Riks, 1979) are used to calculate the
increments of the state vector at node 1. Since these equations are lincarized, the increment
of the state vector at node | so obtained is approximate and the Newton-Raphson method
is employed to correct the approximate values. The corrections arc made, based on the
errors of the state vector at the end node. i.e. node n. These errors are known by comparing
the prescribed boundary values with those of the state vector obtained by transferring the
approximate state vector from node 1 to node 1, using eqns (9) and (135) (Goto et al.. 1988).

4. BUCKLING BEHAVIOR OF RINGS

(a) Governing structural parameters

In order to examine the general buckling behavior of deployable rings, we first clarify
the governing structural parameters. These parameters can be found out as follows, by first
considering the geometrical parameters of rings and then non-dimensionalizing the hield
transfer equations of egn (9),

L, L JARYY, EIG. AR (18a-¢)
For simplicity, we here restrict our attention to steel rings. Then, the value of E/G becomes
constant, Le. £/G x 2.6. Further, if the rings are supposed to have a rectangular cross-
section (A x b) as shown in Fig. 3, independent structural parameters decrease. That is,

noting from Table | that the constants for a rectangular cross-section are given by

A=bh, oo =012, [ = bhY12,

bih 192H & i (2n—)ynh ,
S & D e tanh e e 19a-d
/ 3 { nh ,,g, Q2n=1)° tan 2b (%a-4)
the independent parameters are finally reduced to
hib,  Rih. (20a.b)

(b) Application of numerical analysis

We shall discuss the application of the numerical method to the buckling analysis of
the deployable rings. As an example, we choose a ring with a rectangular cross-section
whose structural parameters arc #/h = 3 and R/h = 20.

Our analysis is based on the approximate ficld transfer cquations derived by truncating
the higher order terms with respect to the element length. Further, the shape of the ring is
approximated by the assemblage of straight elements. Thus. it is important to know the
necessary number of finite elements which yield convergent solutions. As an important
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Fig. 7. Convergence of the maximum moment Af,, applied in buckling process.

physical quantity most sensitive to this discretization, we show in Fig. 7 the convergence
of the maximum moment M, applied in the buckling process. In this figure the moment is
normalized by the maximum moment M, . for the model where half of the ring is divided
into 1500 equal finite elements. In view of the convergence in Fig. 7, 200 elements are
enough for the 1/2 model.

With the ring model discretized above, we analyze the buckling behavior of the deploy-
able ring unit it is transformed to a small ring. Representing the calculated results, we show
in Fig. 8 the relation between the non-dimensionalized external moment MR/El -y and the
rotational angle 0, about the X-axis af the location where the external moment s applied
by the arc-length control. Further, at every n/4 radians in terms of the rotational angle O, the
deformed configurations of the ring are illustrated in Fig. 9. These deformed configurations
correspond to the points marked by (1) +(9) on the cquilibrium path in Fig. 8. As can be scen
from this figure, our numerical analysis accurately simulates the following characteristics
of the buckling behavior of the deployable ring. First, the ring deforms accompanying
considerably large rotations in three-dimensional space and is finally transformed to a small
ring with a diameter of one-third of its original size. Second, the final shape is in the
equilibrium state without any external moment.

(¢) Effect of structural parameters on buckling behavior
Using the numerical analysis explained above, we herein investigate the effect of the
structural parameters on the buckling behavior of the rings with rectangular cross-sections.
First we examine how the MR/El,,— 0y relation shown in Fig. 8 is affected by the
structural parameters: i/b and R/h. The results are summarized in Fig. 10. In this figure,
the result for a ring with a circular cross-section is also included for comparison. As seen
from eqns (18a-e) together with the definitions of the circular cross-sectional constants in

MR
T" ~ b
3) “r
(4)
0.4 L'(z) (5) h h/b=3
R/h=20
03 | (6
0.2 +
0.1 R (7N
(8)
0 ) ) ) ) ) (9) »
1 2 3 4 5 6
Gx (rad)

Fig. 8. Moment-rotation curve of the ring with &/b = 3 and R/h = 20.
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Y X Y X Y X
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Fig. 9. Theoretical transformation process of the deployable ning with A/h = 3 and R/h = 20.

Table 1, the buckling behavior for this case is governed only by the structural paramcter
of R/r where r is the radius of the cross-section.

From Fig. 10, it can be scen that the buckling behavior is very much influenced by the
parameter A/b. That is, for a ring with a smaller value of #/b, a larger moment is required
to buckle it. Further, in case when A/h < 1.51 or the ring has a circular cross-section, the
ring cannot be transformed to a small ring. For the rings with rectangular cross-sections,
the boundary value u* of the parameter ii/h below which this transformation becomes

vy -
. r Circular . %

3.0 r : cross section T

2.0

1.0

Fig. 10. Moment-rotation curves of rings with various kinds of cross-sectional parameters.
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impossible is known to exist somewhere in the range 1.51 < u* < 1.54. However. a more
detailed boundary cannot be identified, because the present numerical analysis becomes
unstable in this range. Since the shapes of the equilibrium curves in Fig. 10 change drastically
from one side of the boundary to the other, the equilibrium curve for the boundary value
h'b = u* is expected to have a bifurcation point, as is schematically shown in Fig. 11. Thus.
for the rings with h;/b very close to the boundary value u* and in the range of 4/b > u*.
their equilibrium curves will have a limit point with very high curvature which numerically
results in a singular tangent system matrix. This is considered to be the chief reason for the
numerical instability.

As for the other structural parameter R’4 or R/r, we cannot determine its effect on the
MR/EI,y— 0y relationship, as far as we examine the realistic range of 5 < (R/h. R/r) < 50.
Thus. the value of R/ior R/ris not noted in Fig. 10. As the governing differential equations
of the deployable rings become highly non-linear, we cannot theoretically verify the above
numerical results. However, if we restrict the problem to the small displacement range, the
following relation holds:

OX =

(l N El,y 851,,) MR an

GJ  n*GJ/JEly’

tJ| A

Noting that eqn (21) does not include the parameter R/A or R/r, we can partly confirm that
the numerical results are not affected by this parameter.

It is known from the aforementioned considerations on the buckling behavior that the
rectangular cross-scctional shapes of the deployable rings must satisfy the requirement that
h/b 2 p* in order for the rings to be transformed to small rings. In addition to the above
requirement, the maximum stress 6, produced in the buckling process must not exceed
the clastic limit of the ring material. In view of this requirement, we shall next investigate
the influcnce of the structural parameters on this maximum stress 0,,,. As a realistic range,
we examine the rings with the parameters 5 < /b < 50 and S £ R/h < 50. Representing
the calculated results, we demonstrate in Figs 12 and 13 the change of the axial stress at
the tixed end which is most significant in the model illustrated in Fig. 4(a). Most of
this axial stress is due to the bending moment about the minor axis of the cross-section. It
should be noted that the axial stress with the same magnitude is also produced at the other
end of this model because of its symmetry. As seen from Figs 12 and 13, the maximum
stress increases with the decrease of the parameters R/ and A/b. Since this maximum
stress almost coincides with the stress in the final configuration, the maximum stress is
approximated well by

MR

3

E Yy

;zt: Boundary value of h/b

g ’
Peu h_ s ,;
| Nala
\ 9
’5
)
’ ’ . .
o L7 ! Bifurcation
. - - +  point
I’ Tt '
, '
’ [
Il ‘\
$
B'>/-‘ Y
‘\
Y
8
X
2x

Fig. 11. Expected behavior of a ring for the boundary value of #/b.
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6, (rad)

. Axial stress at the tixed end of rings with 16 = 20,

(rm.n l

2 ¥ (R/I)(hib) -

Besides the axial stress, a shear stress is produced in the ring. However, this value is less
than /100 of the axial stress and is negligibly small. Thus, the requirement for the rings to
be elastic is approximately expressed from eqn (22) in terms of the structural parameters

as

(R/M)(hib) 2 Els,,

where o, is the tensile or the compressive yicld stress.

Fig. 13.
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a Tz
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Axial stress at the fixed end of cings with R/ = 20.
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Fig. 14. Stability and response of deployable rings under load control.

5. TRANSFORMATION PROCEDURES OF DEPLOYABLE RINGS

In the previous section, the requirements of the deployable rings are examined in terms
of the structural parameters. We here discuss the control method which should be adopted
in their transformation process. Theoretically, it is possible to use the versatile arc-length
control as we did in the present numerical analysis. In reality, we, however, have to use
either the load- or the displacement-control method due to the limitations of loading devices.
Therefore, we examine the applicability of these two control methods.

In Fig. 14, the stability of the equilibrium curves under the load control are illustrated
for two specific cases with or without a snap-back behavior. In our analysis, the stability of
the rings on the equilibrium curves can be identifed by the minimum eigenvalue of the
tangent stiffness matrix except the critical points. That is, the structural system is stable or
unstable according to whether the minimum cigenvalue is positive or negative. From Fig.
14, it can be scen that the unloading equilibrium path starting from the maximum point of
moment is unstable. So, the system will snap dynamically after the maximum moment is
reached. This indicates that the transformation to a small ring is impossible under the load
control.

In the same manner as in Fig. 14, we show in Fig. 15 the stability of the equilibrium
paths when the structural systems are controlled by the rotational angle 0,. In view of
reality, the loading device is assumed here to have the finite torsional rigidity of K,, which
is greater than the absolute value of the tangent stiffness of the equilibrium curve at 6, = 2n.
This assumption ensures the stability of the transformed shape of the rings. With the above
loading device, we have the inclined loading lines with the gradient of — K, R/El,y in the
MR/EI,,—0, diagram and the snaps occur where these lines touch the equilibrium curve
(Thompson and Hunt, 1984). From Fig. 15, it can be seen that the transformation into a
small ring is possible under the displacement control.

<\

\(Snap under load control) 2% x

Fig. 15. Stability and response of deployable rings under displacement control by a loading device
with the torsional rigidity of K.
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Regarding the deployment, the ring will return to its original configuration either by
the load control or the displacement control. as shown in Fig. 15. In the case of the load
control. the transformed equilibrium state is unstable. So, the ring snaps dynamically back
to the original configuration, if we remove the restraint. This implies that the rings have a
self-contained ability for deployment.

6. CONCLUDING REMARKS

We have theoretically examined an interesting buckling phenomenon of a ring which
could be applied to a deployable ring. Since this buckling behavior accompanies extremely
large rotations in three dimensional space, we have used a2 method of analysis which precisely
takes into account the geometrical non-linearity of space rods. As a result of this buckling
analysis. it has been demonstrated that the ring is transformed to a small ring with a
diameter of one-third of its original size. Further, the transformed shape is maintained
without any external forces, This buckling phenomenon, however, does not always occur
for rings with arbitrary cross-sectional shapes. That is. although the buckling phenomenon
has been confirmed for the rings with the rectangular cross-sections (h x b) of h/b 2 1.54, this
phenomenon does not occur for the rings with the rectangular cross-sections of /b < 1.51 ot
those with circular cross-sections. In order for a ring to be deployable, the maximum stress
produced during the buckling process is also required to remain within the elastic range.
This requirement is approximately given by (R/)(h/h) 2 Ele,. where E is Young's modulus,
R is the radius of a ring and o, is the tensile or the compressive yield stress. Regarding the
transformation procedure, the ring can be transformed to a small ring only by the dis-
placement model. In this case, the torsional rigidity of the loading devices has to be greater
than the absolute value of the tangent stiffness of the cquilibrium curves at 0, = 2n. The
deployment of the transformed small rings s, however, possible cither by the load control
or the displacement control. In the case of the load control, the ring snaps dynamically
back to the original configuration if we remove the restraint. This implices that the ring is
self-contained in terms of deployment.
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APPENDIX: DERIVATIVES OF THE COMPONENTS OF THE STATE VECTOR

1. First order derivatives {Q}"}
(a) Displacement (1 < j < 3).
d'{ug. vy wo}/dz = "{(1 +€o)er. (1 +80)s,, (L + ), — 1}
where
g0 = (U F o+ 1y F,+1.F.)/ EA.
(b) Directional cosine (4 € j < 12).
dll;)/dz = [DHl)-
(c) Force and moment (13 < j < 18).

F.=0, F,=0. F,=0

Uediy =L LIF + Ul = LD F,
([K‘I[i'v_{ivli()Fv+(Inl»’:—[j‘tli:)F:
Uilie — L diDF, +(Ie:1_av‘li:[e.<)Fv-

A,
M,
M

2. Second order derivatives {Q{7}
(a) Displacement (1 € j < 3).

uy = ol = (1 +e M I JETL+ M1, JEL)

vh = &oly, — (L +8)(M I JEL + M 1, [EL)

wy = eyl — (L e, )(MLJEL + ML EL)
where

gy = = {(L, F Al P+ 1 FOMJEL+ (U F +1,F, +1.F)M JET [ EA

UM, M M.} =L)AL, - M ML

(b) Directional cosine (4 € f < 12).
L] = (DI} + [DID ).

Non-zero components of [D] are given by

Dy = =Dy, = (I/El,—V/EL)M M,|GJ
D'y = =Dy = L F 1 F, +1.F.+(1/GJ = ELYM M }EI
=Dy =L F +I,F +1,F,—(1/GJ-1EI)M M. }/EI,.

il

() Force and moment (13 € j < 18).

Fi=0, Fi=0, Fi=0
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(Al)

(A2)

(A3)

(Ada—<)

(ASa—<)

(Aba <)

(A7)

(A8)

(A9)

(Al0a-¢)

(Alla—)

M. = (s, =L, LM JEL + (L1, —I:Jiy)"’,r/Elv:‘F: +{ (o, = L0 IM JEL + (1,1, —/e.-[::)A”./Elv}Fx
My = (U dey =L, OM JEL + (b, =L LM ELYF, 4 (L Ly, ~ L L )M JEL + (o, — 1 )M ELLF,
‘rl: = {(1.'.'10: -I.'II&:)M:/EI: + (I.‘([i: _I.‘:Ih)‘wv/EIv}Ft + {(I.'.'IW _I.‘vli‘:)Mv/Elu + (I.'yli.' —IJ:IGV)AIV/EIV}FV

where

UM, =M M.} =[] {M,. =M. M.}

(Al2a-c)

(A13)



